Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 9 of 9 results
1.

Optogenetic Methods in Plant Biology.

blue red UV BLUF domains CarH Cryptochromes Cyanobacteriochromes LOV domains Phytochromes UV receptors Review
Annu Rev Plant Biol, 22 May 2023 DOI: 10.1146/annurev-arplant-071122-094840 Link to full text
Abstract: Optogenetics is a technique employing natural or genetically engineered photoreceptors in transgene organisms to manipulate biological activities with light. Light can be turned on or off, and adjusting its intensity and duration allows optogenetic fine-tuning of cellular processes in a noninvasive and spatiotemporally resolved manner. Since the introduction of Channelrhodopsin-2 and phytochrome-based switches nearly 20 years ago, optogenetic tools have been applied in a variety of model organisms with enormous success, but rarely in plants. For a long time, the dependence of plant growth on light and the absence of retinal, the rhodopsin chromophore, prevented the establishment of plant optogenetics until recent progress overcame these difficulties. We summarize the recent results of work in the field to control plant growth and cellular motion via green light-gated ion channels and present successful applications to light-control gene expression with single or combined photoswitches in plants. Furthermore, we highlight the technical requirements and options for future plant optogenetic research.
2.

Hypothalamic dopamine neurons motivate mating through persistent cAMP signalling.

blue bPAC (BlaC) mouse neural cells Xenopus oocytes Immediate control of second messengers
Nature, 25 Aug 2021 DOI: 10.1038/s41586-021-03845-0 Link to full text
Abstract: Transient neuromodulation can have long-lasting effects on neural circuits and motivational states1-4. Here we examine the dopaminergic mechanisms that underlie mating drive and its persistence in male mice. Brief investigation of females primes a male's interest to mate for tens of minutes, whereas a single successful mating triggers satiety that gradually recovers over days5. We found that both processes are controlled by specialized anteroventral and preoptic periventricular (AVPV/PVpo) dopamine neurons in the hypothalamus. During the investigation of females, dopamine is transiently released in the medial preoptic area (MPOA)-an area that is critical for mating behaviours. Optogenetic stimulation of AVPV/PVpo dopamine axons in the MPOA recapitulates the priming effect of exposure to a female. Using optical and molecular methods for tracking and manipulating intracellular signalling, we show that this priming effect emerges from the accumulation of mating-related dopamine signals in the MPOA through the accrual of cyclic adenosine monophosphate levels and protein kinase A activity. Dopamine transients in the MPOA are abolished after a successful mating, which is likely to ensure abstinence. Consistent with this idea, the inhibition of AVPV/PVpo dopamine neurons selectively demotivates mating, whereas stimulating these neurons restores the motivation to mate after sexual satiety. We therefore conclude that the accumulation or suppression of signals from specialized dopamine neurons regulates mating behaviours across minutes and days.
3.

mem-iLID, a fast and economic protein purification method.

blue bPAC (BlaC) iLID E. coli Xenopus oocytes
Biosci Rep, 18 Jun 2021 DOI: 10.1042/bsr20210800 Link to full text
Abstract: Protein purification is the vital basis to study the function, structure and interaction of proteins. Widely used methods are affinity chromatography-based purifications, which require different chromatography columns and harsh conditions, such as acidic pH and/or adding imidazole or high salt concentration, to elute and collect the purified proteins. Here we established an easy and fast purification method for soluble proteins under mild conditions, based on the light-induced protein dimerization system iLID, which regulates protein binding and release with light. We utilize the biological membrane, which can be easily separated by centrifugation, as the port to anchor the target proteins. In Xenopus laevis oocyte and Escherichia coli, the blue light-sensitive part of iLID, AsLOV2-SsrA, was targeted to the plasma membrane by different membrane anchors. The other part of iLID, SspB, was fused with the protein of interest (POI) and expressed in the cytosol. The SspB-POI can be captured to the membrane fraction through light-induced binding to AsLOV2-SsrA and then released purely to fresh buffer in the dark after simple centrifugation and washing. This method, named mem-iLID, is very flexible in scale and economic. We demonstrate the quickly obtained yield of two pure and fully functional enzymes: a DNA polymerase and a light-activated adenylyl cyclase. Furthermore, we also designed a new SspB mutant for better dissociation and less interference with the protein of interest, which could potentially facilitate other optogenetic manipulations of protein-protein interaction.
4.

Optogenetic tools for manipulation of cyclic nucleotides, functionally coupled to CNG-channels.

blue bPAC (BlaC) C. elegans in vivo Immediate control of second messengers
Br J Pharmacol, 18 Mar 2021 DOI: 10.1111/bph.15445 Link to full text
Abstract: The cyclic nucleotides cAMP and cGMP are ubiquitous second messengers that regulate numerous biological processes. Malfunctional cNMP signalling is linked to multiple diseases and thus is an important target in pharmaceutical research. The existing optogenetic toolbox in C. elegans is restricted to soluble adenylyl cyclases, the membrane-bound Blastocladiella emersonii CyclOp and hyperpolarising rhodopsins, yet missing are membrane-bound photoactivatable adenylyl cyclases and hyperpolarisers based on K+ -currents.
5.

Synthetic Light-Activated Ion Channels for Optogenetic Activation and Inhibition.

blue bPAC (BlaC) D. melanogaster in vivo rat hippocampal neurons Xenopus oocytes Immediate control of second messengers Neuronal activity control
Front Neurosci, 2 Oct 2018 DOI: 10.3389/fnins.2018.00643 Link to full text
Abstract: Optogenetic manipulation of cells or living organisms became widely used in neuroscience following the introduction of the light-gated ion channel channelrhodopsin-2 (ChR2). ChR2 is a non-selective cation channel, ideally suited to depolarize and evoke action potentials in neurons. However, its calcium (Ca2+) permeability and single channel conductance are low and for some applications longer-lasting increases in intracellular Ca2+ might be desirable. Moreover, there is need for an efficient light-gated potassium (K+) channel that can rapidly inhibit spiking in targeted neurons. Considering the importance of Ca2+ and K+ in cell physiology, light-activated Ca2+-permeant and K+-specific channels would be welcome additions to the optogenetic toolbox. Here we describe the engineering of novel light-gated Ca2+-permeant and K+-specific channels by fusing a bacterial photoactivated adenylyl cyclase to cyclic nucleotide-gated channels with high permeability for Ca2+ or for K+, respectively. Optimized fusion constructs showed strong light-gated conductance in Xenopus laevis oocytes and in rat hippocampal neurons. These constructs could also be used to control the motility of Drosophila melanogaster larvae, when expressed in motoneurons. Illumination led to body contraction when motoneurons expressed the light-sensitive Ca2+-permeant channel, and to body extension when expressing the light-sensitive K+ channel, both effectively and reversibly paralyzing the larvae. Further optimization of these constructs will be required for application in adult flies since both constructs led to eclosion failure when expressed in motoneurons.
6.

A LOV-domain-mediated blue-light-activated adenylate (adenylyl) cyclase from the cyanobacterium Microcoleus chthonoplastes PCC 7420.

blue mPAC in vitro Xenopus oocytes Immediate control of second messengers
Biochem J, 1 Nov 2013 DOI: 10.1042/bj20130637 Link to full text
Abstract: Genome screening of the cyanobacterium Microcoleus chthonoplastes PCC 7420 identified a gene encoding a protein (483 amino acids, 54.2 kDa in size) characteristic of a BL (blue light)-regulated adenylate (adenylyl) cyclase function. The photoreceptive part showed signatures of a LOV (light, oxygen, voltage) domain. The gene product, mPAC (Microcoleus photoactivated adenylate cyclase), exhibited the LOV-specific three-peaked absorption band (λmax=450 nm) and underwent conversion into the photoadduct form (λmax=390 nm) upon BL-irradiation. The lifetime for thermal recovery into the parent state was determined as 16 s at 20°C (25 s at 11°C). The adenylate cyclase function showed a constitutive activity (in the dark) that was in-vitro-amplified by a factor of 30 under BL-irradiation. Turnover of the purified protein at saturating light and pH 8 is estimated to 1 cAMP/mPAC per s at 25°C (2 cAMP/mPAC per s at 35°C). The lifetime of light-activated cAMP production after a BL flash was ~14 s at 20°C. The temperature optimum was determined to 35°C and the pH optimum to 8.0. The value for half-maximal activating light intensity is 6 W/m2 (at 35°C). A comparison of mPAC and the BLUF (BL using FAD) protein bPAC (Beggiatoa PAC), as purified proteins and expressed in Xenopus laevis oocytes, yielded higher constitutive activity for mPAC in the dark, but also when illuminated with BL.
7.

PACα--an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans.

blue euPAC C. elegans in vivo Immediate control of second messengers Neuronal activity control
J Neurochem, 20 Jan 2011 DOI: 10.1111/j.1471-4159.2010.07148.x Link to full text
Abstract: Photoactivated adenylyl cyclase α (PACα) was originally isolated from the flagellate Euglena gracilis. Following stimulation by blue light it causes a rapid increase in cAMP levels. In the present study, we expressed PACα in cholinergic neurons of Caenorhabditis elegans. Photoactivation led to a rise in swimming frequency, speed of locomotion, and a decrease in the number of backward locomotion episodes. The extent of the light-induced behavioral effects was dependent on the amount of PACα that was expressed. Furthermore, electrophysiological recordings from body wall muscle cells revealed an increase in miniature post-synaptic currents during light stimulation. We conclude that the observed effects were caused by cAMP synthesis because of photoactivation of pre-synaptic PACα which subsequently triggered acetylcholine release at the neuromuscular junction. Our results demonstrate that PACα can be used as an optogenetic tool in C. elegans for straightforward in vivo manipulation of intracellular cAMP levels by light, with good temporal control and high cell specificity. Thus, using PACα allows manipulation of neurotransmitter release and behavior by directly affecting intracellular signaling.
8.

Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa.

blue bPAC (BlaC) euPAC D. melanogaster in vivo E. coli in vitro rat hippocampal neurons Xenopus oocytes Immediate control of second messengers Neuronal activity control
J Biol Chem, 28 Oct 2010 DOI: 10.1074/jbc.m110.185496 Link to full text
Abstract: The recent success of channelrhodopsin in optogenetics has also caused increasing interest in enzymes that are directly activated by light. We have identified in the genome of the bacterium Beggiatoa a DNA sequence encoding an adenylyl cyclase directly linked to a BLUF (blue light receptor using FAD) type light sensor domain. In Escherichia coli and Xenopus oocytes, this photoactivated adenylyl cyclase (bPAC) showed cyclase activity that is low in darkness but increased 300-fold in the light. This enzymatic activity decays thermally within 20 s in parallel with the red-shifted BLUF photointermediate. bPAC is well expressed in pyramidal neurons and, in combination with cyclic nucleotide gated channels, causes efficient light-induced depolarization. In the Drosophila central nervous system, bPAC mediates light-dependent cAMP increase and behavioral changes in freely moving animals. bPAC seems a perfect optogenetic tool for light modulation of cAMP in neuronal cells and tissues and for studying cAMP-dependent processes in live animals.
9.

Fast manipulation of cellular cAMP level by light in vivo.

blue euPAC D. melanogaster in vivo HEK293 Xenopus oocytes Immediate control of second messengers Neuronal activity control
Nat Methods, 26 Nov 2006 DOI: 10.1038/nmeth975 Link to full text
Abstract: The flagellate Euglena gracilis contains a photoactivated adenylyl cyclase (PAC), consisting of the flavoproteins PACalpha and PACbeta. Here we report functional expression of PACs in Xenopus laevis oocytes, HEK293 cells and in Drosophila melanogaster, where neuronal expression yields light-induced changes in behavior. The activity of PACs is strongly and reversibly enhanced by blue light, providing a powerful tool for light-induced manipulation of cAMP in animal cells.
Submit a new publication to our database